the taylor method for numerical solution of fuzzy generalized pantograph equations with linear functional argument

نویسندگان

n. mikaeilvand

mikaeilvand l. hossieni

hossieni

چکیده

0

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient method for the numerical solution of functional integral equations

We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.

متن کامل

A New Generalized Laguerre-gauss Collocation Scheme for Numerical Solution of Generalized Fractional Pantograph Equations

A.H. BHRAWY1,2, A.A. AL-ZAHRANI3, Y.A. ALHAMED3, D. BALEANU3,4,5 1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia E-mail: [email protected] 2Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt 3Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, J...

متن کامل

A Taylor operation method for solutions of generalized pantograph type delay differential equations

Abstract: In this paper, a new operational matrix method based on the Taylor polynomials is presented to solve generalized pantograph type delay differential equations. The method is based on operational matrices of integration and product for Taylor polynomials. These matrices are obtained by using the best approximation of function by the Taylor polynomials. The advantage of the method is tha...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of industrial mathematics

جلد ۲، شماره ۲، صفحات ۱۱۵-۱۲۷

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023